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Abstract

An adaptive refinenlenl, strategy based on hierarchical elelnellt sul_division is formulat.ed

and iml)h'nwt+ted for meshes containing arl)ilrarv nlixlltres o[ t.et.rahedra, hexahedra. 1)risms

and pyramids. Special at.tentiot_ is given to keepitlg metnorv overheads as low as possible.

This pt'ocedure is coupled with an algel)raic multigrid flow solver which ol)erales on mixed-

element meshes. Inviscid flows as well as viscous flows are computed on adaptively refined

tet.rahedral, hexahedral, and hybrid meshes. Theel[icietwvoftlle melhod is detnonstrated

I)y genet'ating a.ll adal>ted ltexa.hedral mesh containing :_ milliot+ vertices on a t'elativelv

inexpet>ive workstation.
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1 Introduction

The ability to easily incorporate a.daptive meshing techniques represents one of the major

advantages of unstructured grid solution strategies. For tetrahedral meshes, these may I)e

incorporated in a rather straight-forward manner either through Delaunay l)Oin! insertion

methods [1], subdivision with local reconnection methods [2, 3, 4], or hierarchical-based

element subdivision approaches [5, 6, 7, 8, 9].

Recently, there has 1)een renewed interest, in hybrid structured-unstructured grids, or

mixed element unstructured grids, which contain elements other than simplices (i.e. telra-

hedra). Such grids offer the advantages of reduced complexity and possibly increased accu-

racy compared with equivalenl, fully tetrahedral meshes. This is due partly to lhe reduced

connectivilv of elements such as hexahedra over simplicial elements, and the more regular

tessalalion of three-dimensional space which they atford. Particularly tbr viscous ttow cal-

culations, the use of prismatic elements in the boundary layer regions and tetrahedra in

the inviscid flow regions has been demonstrated as a viable lechnique for reducing comt)u-

lational overheads. Additionally. mixed-elenwnl, mesh solvers provicle added flexibililv by

enabling the use of a single tlow solw'r on meshes of ahnost any construction, including

block-sl.ruct ured meshes.

A viscous [tow solver for mixed-element meshes has been previously described ill [10]

by the author. By using a single edge-based data-structure, and an algebraic multigrid

technique, a unified discretiza.tion and solution strategy for meshes of arbitrary element types

was demollstral.ed. This l)aper rel)resents a conlinuation of this philosophy, 1)4' extending

adaptive meshing techniques for unstructured simplicial meshes to meshes of mixed-elemenl

types, and computing the flow on these adapted meshes with the previously developed solver.

In order to retain the flexibility and simplicity of lhe approach, we require thal. the adaplatioll

process inlroduce no new coml)lexities such a.s "hanging nodes", which would sul)sequenl.ly

re(luirc n_odilicalions lo the flow soh:er and posl-processing modules.

Ihlst.ructured mesh computations are currently memory limited. The incorl)oralion of

adal)tive meshing represents but one of several techniques employed to overcome the large

overheads incurred by such computations. It is therefore imperative that the adal)tive mesh-

ing module incur memory overheads which are no larger tha.ll tl,at, required 1)v l.he flow solver

alone, otherwise the technique would 1)e self-defeating. Adaptive meshing requires additional

data-structures which are not present in the flow solver. The impleinenta!ion must therefore

be executed with care to avoid excessive overheads.

2 Adaptive Meshing Approaches

l'k)r tetrahe(h'al meshes, various adai)tive meshing techni(lues may ])e employed. New refine-

ment points may be created and inserl.ed into the mesh using the l)elaunay poinl insertion

algorithm of Bowyer [11]. Similarly, l)oints may also be inserted using an initial forced

connectivity, and then locally ol)timizing the mesh through edge-face swal)ping techniques,

which can be used 1.() recover the Delaunay t)rol)erl.v of l[le mesh [.1, 12]. Alternatively. a.n

element subdivision l)rocedure may ])e adopted, followe(I by a local edge-face swapping 1)base

where the mesh is optimized to the l)claunav or some other criterion [3]. If straighl-forwar(I



elementsubdivision is employed,without any subsequentoptimization procedure,strict hi-
erarchicalsubdivision rules must be followed,otherwisemeshquality degradesrapidly with
eachsubsequentadaptation phase[5, 6].

The advantagesof point insertion and optimization methods are potentially smoother
adapted meshpoint, distributions with higher quality connectivity, while subdivision tech-
niquesbenefit from efficiencyand the ability to easily incorporatede-refinement.For highly
stretched meshestypically employedin viscousflow regions,the Delaunayconstruction is
no longeroptimal, and face-edgeswappingbasedon somemore appropriate criterion must
be employed. Although optimization basedon the minimum-maximum angle has often
been advocatedfor such cases,it has beenfound to be much less reliable than the useof
a forced comlectivity such asone obtains through subdivision techniques,particularly for
high stretching in the presenceof curvature. Local optimization techniquesand hierarchi-
cal subdivisionmethodsare in somesensemutually exclusive,sincethe edge-faceswapping
operation destroysthe hierarchical relationshipwith previousgrid levels.

For hexahedral meshes, adaptive meshing must be achieved through element subdivision.

Interfaces delimiting refined and non-refined regions usually require special consideration.

These regions result in %anging nodes" if the mesh is required to contain only hexahedral

elements. For cell-centered discretizations, using a data-structure based on the faces of

the cells, these regions can be handled without any additional complications to the flow

solver [13]. However, for vertex-based schemes, these "hanging node" control-vohlmeS must

be constructed in a manner which is different from that of regular vertices (sea [14] for

example). On the other hand, if different types of elements are allowed in the mesh, these

can be used to transition the mesh from the refined tic) the unrefined regions, and the flow

solver may operate on the resulting mixed element mesh without any modifications.

3 Adaptive Meshing by Subdivision

In the interest of developing a single strategy for adapting simplicial as well as mixed element

meshes, a hierarchical elenlellt subdivision approach has been adopted. This technique can

be applied to flllly tetrahedral meshes, as well as to any hybrid Inesh containing mixtures of

tetrahedra, pyramids, prislns and hexahedra. The resulting meshes can be employed by the

nmltigrid solver described in [10] without modification.

In order to implement this technique on mixed element meshes, the various allowable

subdivision types for eaclt element type must be defined. The hierarchical rules required to

prevent the degeneration of the grid quality with successive adaptation levels must also be
constructe(I.

For tetrahedral elements, the subdivision rules have already been well formulated iu

the literature [15]. We allow only three basic subdivision types, as depicted in Figure 1:

A tetrahedron may be divided into 2 children, 4 children, or 8 children. The two former

cases result in anisotropic refinement, while the last case produces an isotropic refinement.

In order to prevent the degeneration of grid quality, any anisotropic children Inay not be

refined further. If any such cells require refinement, they are removed, the parent cell is

isotropically refined, and the resulting isotropic children may then be further refined. When

limiting the possible refinenmnt types as (lescribed above, one nmst ensure that a compatible



refinement pattern is obtained on all elementsof the meshif a valid refined meshis 1o l)e
obtained. This is achievedby' adding refinemenl points along the al)propriale edgeson all
elementswhich are flaggedas havh_ga.non-valid refinement l)att.ern. Sincethe addition of
a refinement point to a.nedgeaffectsall elementswhich contain the edge, the processis
aI)l)lied iteratively, until all resulting eletnenl refinement I)al.t.erns are valid and no further

points are required.
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Figure 1" Permitted sul)division types for telrahedral elements

The isotropic refillemenl of a hexahed,'al element results in eight shnilar but smaller hexahe-

dral elements. However, anisotropic refinement of a hexahedral element results in childrelJ

which may consist of hexahedra, pyramids, prisms and letrahedra. By apl)lying 1.he same

hierarchical rules a.s described for tetrahedral nieshes_ we can ensure thai tllese elements

will never be refined further. Instead, if further refinelnent ill these regions is desired, such

elements are deleted and theh" parents refined into eighl smaller hexahedra. Thus, for fully

hexahedral meshes, additional elelnenl t3:pes may only al)l)ear al the 1)oundaries between

refined and non-refined regions, or nlore generally, ])elween two regions which differ by one
refinenlent level.

The task of hnplelnent.ing adaptive mesh subdivision tk)r elemenl s other than lel.rahedra,

consists in defining the minimunl number of allowable subdivision lypes. On lhe one hand,

it, is desirable to limi! the numl)er of subdivision types for COml)lexily reasons. On the other

hand, a iniilimum number of subdivision types must l)e implemented to allow for COml)atible

subdivision types to be attained on all elements without, incurring excessive additional re-

finement. For exa.ml)le, if we do not allow R)I" hexahedra with three fully refined quad faces

(e.g. Type 7 in Figure 2), refinement in concave regions cannel 1)e made 1o terminale, and

l)rol)agates throughoul large 1)orlions of the domain dul'ing lhe ilerative a(l(lilion of refine-

ment points. A total ors hexahedral rofillelnent types have been iml)h,mented. These types

are illustrated in Figure 2.
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Figure 5: Permitted subdivision t,ypes for triangular and quadrilat,eral faces

Itex Ref Type

Type 1

Type 2

Type 3

Hexahed ra

0

0

0

Pl'istns Pyramids

Type 4 0

Type 5 0

Type 6 0

Type 7 0

Type S ,_

0 5

0 5

2 6

3 8

0 0

'I_trahed ra

0

6

4

4

6

3

2

0

Table 1: Resulting (!hildren (',ell Types for Various tlexahedral Refinement Patterns

A total of 9 prismatic and 8 pyramidal refinenlent types have also been implemented.

These are illustrated in Figures 3 and 4. The resulting children cell types for each refine-

ment pattern are docurl|enled in Table 1 for hexahedral subdivisions, Table 2 for prismatic

subdivisions, and Table 3 for 1)yramidal subdivisions. The required refinement types are

6



Prism Ref Type

Type 1

Type 2

Type 3

Type :1

Type 5

Type 6

Type 7

Type S

Tyl)e 9

[)riSli1S

0

0

0

0

0

0

0

0

Pyramids Tetrahed ra

Tal)le 2: I{esulting (lhildren ('ell Types for Various Prismalic Refinement Patlerns



P3,ramid Ref Type

Type 1

Type 2

Type 3

Type -1

Type 5

Type 6

Type 7

Type 8

Pyramids

1

0

0

0

4

2

0

6

Tetrahedra

Ta.ble 3: Resulting (!hildren Cell Types for Various Pyramidal Refinement Patterns

determined by first considering the various possible refinement patterns of a. triangular and

a quadrilateral face. A triangular ['ace may be divided into two or four triangles, while

a quadrilateral face may be divided into three or four triangles, or four quadrilaterals, as

shown in Figm'e 5. By considering all possible face subdivision patteri> for all faces of a

given element, a lisl of all possible cell subdivision types can ])e constructed, blany of these

subdivision types are equivalent, and merely correspond to a different orientation of the cell.

For example, ill case 1 in Figure "2, where a single edge of a hexahedral cell is refined, there

are 12 possible orientations, corresponding to the 12 edges of the hexahedron. In total,

when the number of orientations for each refinement type is considered, there is a. total of

90 hexahedral, ,15 prismatic, and 30 pyramidal configurations which must be taken into ac-

count. These are implemented by coding one canonical subdivision routine for each tsp' e,

and using an orientation lnask to reorder the element, indices according to the orientation of

the subdivision. Isotropic subdivision of all cell types results in 8 smaller cells of the same

type as the parent cell, except, in the case of pyramidal cells, were isotropic refinement yields

6 p3;ramidal children, and 4 tetrahedral children.

This implementation differs significantly from other non-tetrahedral adaptive meshing

strategies [16, 17]. For example, in [17], a limited number of subdivision types is used,

and refinement compatibility is ensured through the use of additional points inserted at.

neighboring cell centroids. Instead, we rely on the use of nlany possible anisotropic refinement

patterns to generate compatible refinement patterns. These refinement types have been

implemented for tetrahedra and hexahedra, a.s well as for prisms and pyramids. However,

8



directional refinement [16, 17, 18]hasnot.beenin_plementedin tile presenl,context.

4 Hanging Edges

The process of defining the various elelnenl subdivision types consists in constructing combi-

nations of children hexahedra, t.etrahedra, i)risms and pyranlids which are non-overlapping,

completely fill the volume of the parent element, and are compatible with the sul)division

I)a.tterlls of the parent faces. This is achieved for all subdivision tyl)es of all elements except

for one: a hexahedral type 7 vetinelnent., i.e. three fully refined hexahedral faces.

In l=his ease, it is not possible to till the intel'ior of the hexahedron wit h combinations of

other elemenls which respect the face subdivision patterns. This type of retinem('nl ('amlot

be omitted however, since this obviates tile possibility of creating conw'x refined regions on

hexahedral meshes, as described earlier. This l'efillelllelll lyl)e is constructed I)3' subdividing

the parenl, hexahedron into :_ prisms, 8 pyramids and 2 tetrahedra, which results in lhe face

subdivision pa.tlern shown in Figure 6. This face pallern differs from the desired one by

the addition of a. diagonal edge on one of the children quadrilateral faces. The result is a

"hanging diagonal" edge which may not I)e l)resenl in l,]le neighboring elemenl, which shares

this quadrilateral face.

_ -_. ..l_ ¸ lB. •

.J it.. t._ _

i,:, - ' • :• _ ! • • i

" /I it "a

\ / \

....... I

a) b)

Figure 6: ltanging edge resulting from Type 7 hexahedral refinement and two possibh' treat-

nlenl.s of hanging edge: a) modified dual control-volume, 1)) inserlion of extra vertex into

hexahedron with hanging edge

There are va.vious possibilities for treating this situation. The first option is to allow

for hanging edges in the final mesh, and modify the control volumes employed by the flow

solver in the vicinity of these edges. The dual control-volume graph for a hexahedron with a

hanging edge is depicted in Figure 6 a). The faces of the dual-control volumes are const ruct.ed

by considering the eentroids of each neighboring elenlent., a.s well as the centroids of all

quadrilateral and triangular faces. This implemental.ion corresponds to a simple modification

of the edge weights in the flow solver.

Another possibilil y is to ensure coral)at il)le face pa.tt erns throughout, the mesh by inserting

a.n additional i)oinl into cells which I)ovder on a quadrilateral face wit], a ]tanging edge. For



example, if the neighboring element is a hexahedron,this cell can be subdivided into six
pyramids by inserting a vertex at its centroid, and the appropriate pyramid can then be
split, into two tetrahedra in order to conformto the facesubdivisionpattern. This is similar
to the point insertion procedureusedin [17]to preventpropagationof hexahedralrefinement.

In both cases,the modifications to tile meshare performedat the end of the adaptation
phaseprior to the flow solution phase. Thesemodifications are not included in tile hierar-
chical refinementdescriptionof the mesh,which may allow hangingedges,and whichforms
the beginning state for subsequentrefinements,sinceany further refinementof a cell with a
hangingedgewill result in isotropic refinementof its parent and thus removalof the hangillg
edge.

In this work, both approacheshave beenimplemented. However, the examplesshown
belowhaveall beenperformed usingthe additional point isertion method.

5 Implementation Aspects

Throughout the refinement procedure, new vertices are created either at the center of an edge

when an edge is split into two children edges, at the centroid of a quadrilateral face when

this face is refined into four smaller quadrilateral faces (c.f. Figure 5), or a.t the centroid of a

hexahedral cell when the hexahedron is isotrol)ically refined. The creation of vertices a.t the

centroids of quadrilateral faces requires the storage of the quadrilateral faces of the mesh in

order to uniquely flag such new points, in addition to the storage of edges and cells which is

required for all elemen! types.

Although refinement criteria can be evaluated using only edges of the lnesh, refinement

decisions are element-based. In the initial refinement pass, the refinement criterion is eval-

uated along each edge of each element. When the refinement criterion is satisfied along any

edge of a given element, all edges of thal. element are flagged for refinelnent, thus creating

an isotrol)ic refinement pattern for that element.

An iterative procedure is subsequently elnployed to generate suitable refinement patterns

for all element types in 1.he mesh. In general a small number of iterations is required to

achieve (onvergence. When anisotropically refined elements are to be re-refined, they must

first be removed and their parents IlltlSt I)e isotropically refined. Since these new children

are not present in the initial mesh, it. is possible that after they are formed, they contain

edges which have been previously flagged for refinement, and thus subsequent refinement

is required. Additiona.lly, one must ensure that compatible refinement patterns are now

obtained on these new ('lements. Although it. is possible t.o predict the entire refinement

patterns for all elements including anisotropically refined elements, the complexity of such

a task for mixed element meshes becomes overwhehning. Therefore, an outer iteration loop

is employed. In the first phase, the compatil)le refinement patterns on all existing cells is

determined iteratively. The newly refined cells are then formed, and the process is repeated

on the new set of cells, using the same refinement flags. The entire process is repeated until

no further refinement is detected. Usually, the outer iterative loop terminates in one or two

passes.

As mentioned previously, an important aspect in the implementation of any adaptive

meshing module is that the resources required by the adaptive meshing module be no larger

10



than those required by the flow solver.Tile flow solverrequiresonly a singledata-structure
to computethe discretiza.t.ionon mixed elementmeshes,i.e. the edgedata-structure. On the
other hand, the adaptivemeshingmodule requiresthe edgedata-structure aswell, but also
requires the cell-to-vertex data-structure, a.swell as the cell-to-edgedata-struct.ures,since
refinement is achievedby flagging edgesfor refinenlent, but the subdivision decisionsare
performedon an elementbasis. In addition, all the hierarchica.1information must be stored.

The flow solver of reference[t0] can operate at. approximately 100 to 150 words per
vertex. For tetrahedral meshes,the cell-to-vert.exand cell-to-edgedata-slructures alone
consumea.pproximately60 wordsper vertex. Theseadditional data-structuresthus require
a substantial a.mounlof memory, and it. is a non-trivial task to ensuret.hat the adaplive
meshingmodule memoryrequirementsdo not exceedthoseof the flow solver.

i\lthough a hierarchical st.orage scheme where the cells point to the faces, the faces point

to the edges, and the edges point to the vertices, simplifies the implementation of subdivision

schemes, such implementations illcur excessive memory overheads. In our implementation,

we nmke use of cell-to-vertex, cell-to-edge, and cell-to-quadrilatera.l-face information, as well

a.s quadrilateral face-to-edge information. Of particular importance is the need to avoid

storing the triangular faces of the mesh. For a tetrahedral mesh of N vertices, the number

of triangular faces is of the order of 12N. To identify the three forming vertices or edges for

each triangular face, as well as the two tetrahedra which share lhe face requires a lotal of

60N storage. Similarly, if one chooses to store a. list of all eight "l)otenlial" children for each

element, this alnounl s to .'ISN storage local.ions for a lel rahedral mesh of N vertices. Instead.

we use a linked list to store the children of all elenlents. This can be achieved with an arra.y

which is twice as large as the overall numl)er of elenlents for mixed elelllenl meshes.

Overall inemory requirements det)end on the tyl)es of elements in the mesh. For let.ralle-

dral meshes, a.pproxinmtely 120 words per vertex are required, while for hexahedral meshes

74 words per vertex are used. Requiremenls for 1)rismatic, pyramida.1, and of course 113....

l)rid nleshes fall in ])etween these two extremes. These estimates do not include associated

boundary face and hierarchical inR)rmation whi('h can add from 10_/_ to 25g= more storage.

The a.daptive refinement I)rocedure begins I)3,"iteral.ively del,erln]ning a ('Oml)atil)le refine-

llletll ])a, tl,erll oIt all elements of the input mesh. Once lhis has been a.chieved, all children

('ells of a.nisolropically refined parent (:ells which are to be further refined are deleted, as well

as all faces attd edges which are only accessed by these relnoved ('ells. All corresponding lists

are then shifte(1 to occul)y contiguous space in memory. The size of the new mesh is then

predicted t)3, looping over all cells and counting the number of children cells, faces alld edges

whi('[l will result in the refinement phase. The predicted size of the new mesh is lhen used

to allocate all the required memory for the refinement ol)eration in a. single sic'p, or 1o fermi-

na.le l.ho i)rograul if not enough memory is availal)le. This l)rocedure reduces overall memory

requirements I)y firsl, removing any memory associate(1 with data.-struclure elemenl.s 1o t)e

deleted, and ena.1)les one to examine the characteristics of the refined mesh l)efor(, a('tually

• "Sgeilerating this new mesh. _Ihi,' should also prove useful for distril)uted memory at)pli('a-

tions, where it. may be more efficient to pa.rtition the unrefined mesh based on the I)re(licte(t

tetinement (listril)ulioil. particularly hi cases where the amounl of desire(l refinement local

to a given l)rocessor exceeds the memory resources of thai l)ro('essor.
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6 Flow Solver Description

Tile Reynolds-averaged Navier-Stokes flow solver consists of a finite-volume central-difference

discretization with added artificial dissipation for stability. The variables are stored at the

vertices of the mesh, and the solver is capable of operating on meshes containing any mixture

of tetrahedra, pyramids, prisms and hexahedra. On tetrahedral elements, the full Navier-

Stokes viscous terms are employed, while on other types of elements, the thin-layer version

of these terms is employed, albeit in all three coordinate directions. For viscous flow cases,

turbulence effects are accounted for using the one-equation model of Spalart and Allmaras

[19]. Tile code employs a single edge-based data-structure, which enables the fluxes to be

computed over all various element types of the mesh in a single loop over the edges.

Explicit time-stepping is employed to integrate the discretized equations to steady-state,

and an alget)raic or agglomeration multigrid procedure is employed to accelerate conver-

gence. The agglomeration procedure automatically constructs coarse levels for the multigrid

algorithm by fusing together or agglomerating neighboring fine grid control volumes. These

control volumes are based on the dual of the mesh, and can be constructed using only tlle

edges of the mesh. The agglomeration procedure can thus be employed without modification

on meshes of mixed elelnent types. The resulting coarse meshes contain large polyhedral cells

which in general are not. tetrahedral, hexahedral, pyramidal or prismatic. The edge-based

discretization routines enable the flow solver to operate on these coarse levels as well.

7 Results

A "conservative" adaptive refinement; strategy is adopted in the following cases. We begin

with relatively well resolved initial grids, and set the refinement tolerances to produce "lib-

eral" amounts of refinement, generally increasing the number of mesh points by a factor of

3 to 4 at each refinement pass, and thus employ a small number of refinement levels. This

is in contrast to the often advocated approach of using a large number of refinement levels

in conjunction with a. vet"3' coarse initial grid to obtain a so-called "optimal" final mesh.

Figure 7: Initial letrahedral mesh about transport aircrafl, configuration (number of vertices

= 106,000)
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Our conservativeapproachisdictated bytile lackof reliableerrorestimators. In tile following
examples,tile undivided gradient of density is usedasa refinementcriterion. A threshold
value is set as an input parameter, and any cells whosevaluesexceedthe threshold are
flagged for refinement. Additional refinement is then determined by lhe iterations required
to obtain compatible refinementpatterns.

Figure 8: Adaplively refined l_etrahedralmeshaboul transport aircraft configuralion afler
two levels of refinement (mamber of vertices = 1.3 million

Figure 9: (!omputed Math contours on adaptively refined tetrahedral mesh for lra nsporl

aircraft configuralion (Math = 0.768, incidence = 1.116 degrees)

The firsl example consists of the inviscid flow over an aircraft configuration using a fldly

tetrahedral mesh. The initial mesh is depicted in Figure 7. This mesh was generated using

lhe advancing-front method of Pirzadeh [20] and conlains approximalely 10(i.000 points and

576,000 cells. The mesh is adapted twice throughou! the calculation, and the final mesh is

depicted in Figure S. This ,wsh contains 1.3 million points and 8 million lelrahedra. Mosl

of the refinetllenl occurs along l.he wing. in particular ai the leading and irailing edges and

in the vicilfitv of the shock for the lasl refinemenl level. The compuled Niach conlours oil

the tinal adal)ted mesh are displayed hi t:igure 9. The Math mmd)er for this case is 0.768
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and the incidence is 1.116 degrees. The adaptive meshing module as well as the flow solution

module were both run oll a SUN ULTRA workstation with 1 Gbyte of memory. The adaptive

meshing module requires 750 Mbytes of memory and approximately 15 minutes to generate

the final mesh, while the flow solver requires 1 Gbyte of memory and ll hours to generate

the solution displayed in Figure 9, using 100 nmltigrid cycles. Both codes were compiled

using 64 bit real precision and 32 bit integer precision.

In its present form, the mesh adaptation module may be applied to fully tetrahedral

meshes as well as mixed element meshes. As a subset of these cases, block structured meshes

can also be handled by treating them as a set of unstructured hexahedra.

Figure 10:

12.9,187)

5/

Initial block structured mesh about ONERA M6 wing (number of vertices =

Figure 11:

million)

Adapted hexahedral mesh about ONERA M6 wing (number of vertices = 3



t

Figure 12: (!ornputed Mach contours oil adal)led hexahedral mesh (Mach= 0.84, Incidence

= 3.06 degrees)

t:igure 10 depicts a fully hexahedral block structured mesh aboul an ONE1R:'\ M6 wing.

This grid wa.s provided by P. Eisetnan of lhe Progranl Developnlenl. ('orporat ion. I1 conl.ains

1"29,187 points and 1.11 I)locks. The inviscid flow over this contigural.ion has 1)een ('onll)ul.ed

,_ and degrees incidence, and the niesh has 1)een adal)tivelya.l a Mach nulnt)er of 0.c4 3.06

refined l.hree limes, file resulting refined niesh is depici.ed in Figure 11. This lllesh coiil.ains

a i.oi.a.l of 3 nlillion points, ['roFn which are formed al)l)roxhnately :i.l nlillion hexahedra,

300.000 i.et.ra.hedr_t., ._00,()()0 l)risnls and 47,000 pyra.lnids. The refiilelllOllt t)aitern is seeil

io follow the doul)le shock l)ai.l.ern which is associat.ed wit.h the flow at 1.hese condil.]ons, as

well as the regions of rapid expansion and COml)ression near the leading and tl'a.ililig edges

of the wing. The conipui.ed Mach contours on this mesh are displayed in lqgure 12. The

retinenienl ol)eralion was run on a. SUN IILTRA worksl.ation and required 1.2 (ll)ytes of

menlory (swap space was used for the memory requirements over the 1 (lbvi.e core Ilielnoi'v

of the workslation) and al)out. 45 minutes of CPU time. The flow solvel" re(luire(I 1.6 (ll)vt.es

o[" lnelllOry and was l.herefore I'un oil the (:RAY (_90. _Vliite the use of ;/million grid l)oinls

to resolve l.he inviscid flow over a sin/l)le swept wing may a.i)l)eai" excessive, il. is nevertheless

useful 1.o delnonstral.e the elliciencv a.lt.ahial)le on a relalivelv hiexl)ensive wol'kslalion 1)v

lhe combhiaiion the low lnemorv hnl)lenienl.atioll of the adapl.lve iliesllilig nlodule, and the

use of hexaliedra.l meshes which conl.ain less than half lhe numl)er of edges of an equivalenl
tetrahedral mes]i.

Tlte final exanll>le involves the viscous flow over a 1)a.rt.ial-span flap wing conliguration

liSiilg a nlixe(t elelll(Hll, lllesh. The initial llieS]l is depicted in Figlll'(' 13. The ('elll.el" se('-

l.]Oli Of lhis iliesh was collstruct.ed using the advancing-front niel.hod of 1)irza(teh [20]. The

ietrahedra in l.ho I)oundary layer l'Og]Oll Of lliis l'liesh were t.lietl lliel'gjed inlo l)riSlliS llSillg

l.he Iliesh Illel'gillg a.lgoril.hln described in [10]. Tills conll)ined ])risnialic-l.el.ra.hedr_-i] Celllel'

lllesh secl]Oll was then exlruded in I)oih sl)anwise directions, l'estll/illg in a illesh (onlaillillg

;_/nlixlure of hexahedra, prisms and tetrahedra. A closeup of the near wall region is depicted

in I_'igure 1:1, illusi.raling ihe hexahedral and 1)rislnalic elenients in this region. The nlesh

contains a. l oial of 165,000 vcriices, 72S,000 telrahedra.. 18-1.000 prisins, and 28.000 hexa-

hedra.. The viscous l.uri)ulenl flow is collil)ill.ed eli this iliesh al. a Math nlliill)er of 0.2, a

]{evnolds Illllllt)Oi' ()P :1.'7 lliiilioli, and lO degrees incidence.
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Figure 13: Initial mixed-elenient niesh for partial-span flap configuration showing hexahedral

and prismatic cells in near wall region (number of vertices = 165,000)

Figure 14: Adaptively refined mixed element mesh fox" partial-span flap configuration afl, er

two levels of refinement (number of vertices = 1.8 million)
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Figm'e 15: (!omputed densit.v contours on a.dapled mixed-element mesh for partial span flap

configuration (Nla('h = 0.2. Reynolds number= 3.7 million, Incidence = 10 degrees)

The mesh is a(la.l)te(l twice (luring the solution process, resulting ill the final mesh (lel)icte(l

in Figure 14. This mesh contains a total of 1.S million points, with al)l)roximal.ely 2.2

million letra.lle(h'a, 2 million prisms, 260,000 pyramids, and 312.000 hexahe(h'a. The adaptive

meshing module was run on a SUN I;LTIIA workslation and required 1 (;I)vte of melnorv

and 30 minu'_es of ('l)U time for the final refinement l)hase. The ('Oml)ute(l (lensitv contours

on this adal)te(l mesh at'(" (lel)ictc(l iJl Figure 15.

8 Conclusions and Future Work

While the memory and (l)U requirements of the adal)tive meshing module are reasonal)le for

large steady-state calculations, reduced ci)n requirements would I)e (lesirat)le for mlsteadv

calculations, where a<laptalion may ])e required every several t.ime-stel)s. Much of the ('l)n

time is spent in the iterative determination of coml)atible re[inemen! i)att(,rns. This l)hase

can l)e greatly accelerale(t, albeit with added nlemorv requirements, I)3: flagging only those

('ells which receive additional refinement a.|. each pass, au(l then examining only lhose ('ells

an(1 their neighbors at each ad(titiona] iteration, l)erefinement 1)y retracing the hierarchi('al

sul)divisiou tree has been inll)lemente(t for tetrahedral meshes and should also 1)e extended

to other lyl)es of elenienls.

The a(lal)tive meshing module was constructed as a separate co(te from the flow solver.

The a(lal)tive mesher reads in a mesh file an(1 a solution file generated I)v lhe flow solver

and OUtl)ut.s a refined mesh and iuterl)olat.e(I solution file which is then rea(t in l)v the flow

solver for the next solution t)hase. Integrating the two mo(lules inlo a single ('o(le would

require all flow solver and mesh refiilemen! (lata st ru('tures to 1)e hel(1 simullaneouslv in ('ore

memory, which would in turn great]y reduce the size of l)rot)lems which can 1)e handled.

In the present procedure, ou]y the require(t clata-stru('tm'es for each module are resi(lenl in

Illelll()l'3; and the two modules communicate through file l/O. This procedure can easily l)e

a,lltonlate(l using a scripting language, ()n hierarchi('al memory nmchii1es, such as the CI(:\Y

(!-.q(). ['url]ler a¢'('eleratiou could l)e achiev(-(l I)3' makiug use of lhe solid-state disk (SSl)).
The use of hexahe(]ra] and mixed e]emenl meshes for Iransienl ca]cu]ations with relative
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|)0([ 3' motion and deforming grids remains an open area for research.
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